首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1247篇
  免费   9篇
  国内免费   29篇
测绘学   1篇
大气科学   65篇
地球物理   239篇
地质学   423篇
海洋学   486篇
天文学   7篇
综合类   9篇
自然地理   55篇
  2022年   6篇
  2021年   6篇
  2019年   9篇
  2017年   19篇
  2016年   17篇
  2015年   30篇
  2014年   41篇
  2013年   52篇
  2012年   24篇
  2011年   78篇
  2010年   59篇
  2009年   78篇
  2008年   56篇
  2007年   64篇
  2006年   71篇
  2005年   48篇
  2004年   29篇
  2003年   55篇
  2002年   34篇
  2001年   28篇
  2000年   33篇
  1999年   28篇
  1998年   16篇
  1997年   7篇
  1996年   9篇
  1995年   10篇
  1994年   10篇
  1993年   14篇
  1992年   9篇
  1991年   9篇
  1990年   9篇
  1989年   8篇
  1988年   11篇
  1987年   6篇
  1986年   12篇
  1985年   20篇
  1984年   27篇
  1983年   32篇
  1982年   24篇
  1981年   25篇
  1980年   19篇
  1979年   23篇
  1978年   18篇
  1977年   21篇
  1976年   16篇
  1975年   13篇
  1974年   8篇
  1973年   9篇
  1972年   9篇
  1971年   5篇
排序方式: 共有1285条查询结果,搜索用时 31 毫秒
61.
Pore water profiles of dissolved Si, Ca2+, SO42-, CH4, and TCO2 (Dissolved Inorganic Carbon; DIC) were determined from multicores and gravity cores collected at nine sites off Southern California, the west coast of Mexico, and within the Gulf of California. These sites were located within the eastern North Pacific oxygen minimum zone at depths of 400 to 900 m and in settings where bottom water oxygen concentrations were <3 μM and sediments were laminated. Pore water profiles were defined at a resolution of millimeters (whole core squeezing), centimeters (sectioning and squeezing) and meters (gravity core sectioning and squeezing), and diffusive fluxes were calculated for different zones within the sediment column. The flux of dissolved silica across the sediment-water interface (SWI) ranged from 0.3 to 3.4 mmol Si m-2d-1, and TCO2 fluxes ranged from 0.8 to 4.6 mmol C m-2d-1. A positive correlation (r = 0.74) existed between these fluxes, yet these two constituents exhibited significantly different diagenetic behavior downcore; dissolved Si generally reached a constant concentration (between 450 and 900 μM) in the upper few cm, whereas TCO2 concentrations increased monotonically with depth.Methane was detected at micromolar levels in sediment intervals between 0 and 60 cm and at five sites, increased to millimolar levels at depths of 80 to 170 cm. At the horizon marking the appearance of millimolar levels of methane, there was a distinct change in slope of the sulfate and TCO2 gradients. A flux budget for this horizon was determined by using linear fits to pore water profiles; these budgets indicate that the upward TCO2 flux away from this horizon is 40 to 50% greater than the downward sulfate flux to this horizon. Given that the TCO2 flux to this horizon from below was quite small, this imbalance suggests that anaerobic oxidation of methane by sulfate is not the only process producing TCO2 within this horizon. A budget for TCO2 at this horizon is balanced when 40 to 80% of the sulfate flux is attributed to organic carbon remineralization. Of the DIC that diffuses across the SWI, 20 to 40% is generated by reactions occurring within or below this deep reaction horizon.  相似文献   
62.
South Atlantic transports, as simulated by a global ocean-sea ice model forced with the Coordinated Ocean-ice Reference Experiments version 2 (CORE-II) interannually varying air-sea reanalysis data sets, are analyzed for the period 1958–2007. The ocean-sea ice model is configured at three different resolutions: from eddy-permitting to coarsened grid spacing. A particular focus is given to the effect of eddy fluxes and inter-ocean exchanges on the South Atlantic Meridional Overturning Circulation (SAMOC), as well as on the main factors contributing to the interannual variability during the integration period. Differences between refined and coarsened grid spacing models are more evident in coastal areas and in regions of high eddy activities. Major discrepancies are associated to both the parameterization of eddy fluxes and the coarse representation of the bathymetry. The refined grid spacing model produces higher values of both SAMOC index, defined as the maximum of the zonally-integrated northward cumulative volume transport (CVT) from surface to bottom across ∼34° S, and meridional heat transport (MHT). All models show high correlations between SAMOC index and MHT, as well as a strengthening of the transports in the 1980–2007 period. The strengthening of the SAMOC index is mainly dominated by surface and mode waters in all models. In surface and intermediate layers, the regions contributing to this trend are located east of 40° W. These changes are compensated by the strengthening of the poleward transport in deeper layers, mostly in the western part of the basin. The MHT trend is connected with the combined effect of a heat transport increase through the Drake Passage and a reduction of the heat loss through the eastern section between Africa and Antarctica, mainly associated with a strengthening in heat entering into the basin through the Agulhas system.  相似文献   
63.
64.
We analyzed seafloor morphology and geophysical anomalies of the Southeast Indian Ridge(SEIR) to reveal the remarkable changes in magma supply along this intermediate fast-spreading ridge. We found systematic differences of the Australian-Antarctic Discordance(AAD) from adjacent ridge segments with the residual mantle Bouguer gravity anomaly(RMBA) being more positive, seafloor being deeper, morphology being more chaotic, M factors being smaller at the AAD. These systematic anomalies, as well as the observed Na_(8.0) being greater and Fe_(8.0) being smaller at AAD, suggest relatively starved magma supply and relatively thin crust within the AAD.Comparing to the adjacent ridges segments, the calculated average map-view M factors are relatively small for the AAD, where several Oceanic Core Complexes(OCCs) develop. Close to 30 OCCs were found to be distributed asymmetrically along the SEIR with 60% of OCCs at the northern flank. The OCCs are concentrated mainly in Segments B3 and B4 within the AAD at ~124°–126°E, as well as at the eastern end of Zone C at ~115°E. The relatively small map-view M factors within the AAD indicate stronger tectonism than the adjacent SEIR segments.The interaction between the westward migrating Pacific mantle and the relatively cold mantle beneath the AAD may have caused a reduction in magma supply, leading to the development of abundant OCCs.  相似文献   
65.
66.
67.
Marine minerals such as manganese nodules, Co-rich ferromanganese crusts, and seafloor massive sulfides are commonly seen as possible future resources that could potentially add to the global raw materials supply. At present, a proper assessment of these resources is not possible due to a severe lack of information regarding their size, distribution, and composition. It is clear, however, that manganese nodules and Co-rich ferromanganese crusts are a vast resource and mining them could have a profound impact on global metal markets, whereas the global resource potential of seafloor massive sulfides appears to be small. These deep-sea mineral commodities are formed by very different geological processes resulting in deposits with distinctly different characteristics. The geological boundary conditions also determine the size of any future mining operations and the area that will be affected by mining. Similarly, the sizes of the most favorable areas that need to be explored for a global resource assessment are also dependent on the geological environment. Size reaches 38 million km2 for manganese nodules, while those for Co-rich crusts (1.7 million km2) and massive sulfides (3.2 million km2) are much smaller. Moreover, different commodities are more abundant in some jurisdictions than in others. While only 19% of the favorable area for manganese nodules lies within the Exclusive Economic Zone of coastal states or is covered by proposals for the extension of the continental shelf, 42% of the favorable areas for massive sulfides and 54% for Co-rich crusts are located in EEZs.  相似文献   
68.
Ventilation in the North Pacifi c is examined using data from the eddy-resolving 1/12° global HYbrid Coordinate Ocean Model(HYCOM) and Quik SCAT wind stress data. For the period January 2004 to December 2006 and area 20°–40°N, the total annual subduction rate is estimated at 79 Sv, and the obduction rate 41 Sv. Resolving the small-scale and high-frequency components of the eddy fi eld can increase the subduction rate by 42 Sv, and obduction by 31 Sv. Lateral induction is the dominant contributor to enhancement of subduction/obduction, and temporal change of mixed layer depth has a secondary role. Further analysis indicates that the high-frequency components of the eddy fi eld, especially those with timescale shorter than 10 days, are the most critical factor enhancing subduction/obduction.  相似文献   
69.
70.
Abstract

Experimental and theoretical results are described for the moving flame experiment, where a heat source moves under a horizontal, annular channel filled with liquid mercury. The physical range under discussion consists of the creep flow limit, in which inertial forces are less than viscous forces. A mean surface flow was observed on the mercury. This flow was up to four times greater than the heater speed, and in an opposite direction. The ratio of mean flow to heater speed was theoretically and experimentally found to be proportional to the square of the thermal amplitude, in agreement with a special limit of Davey's earlier results. The basic flow here, as contrasted to those flows analyzed by earlier theories, appears to be generated by surface tension. However, the Reynolds stress mechanism which generates the mean flow is the same. Some experimental flows were so rapid that the range of validity of the present, as well as some earlier theories, was exceeded. The present theory suggests that the higher order nonlinearities may have cancellative effects, which implies that the present and some earlier theories are valid beyond their normal range of validity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号